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Abstract. A stochastic approach to fission dynamics based on three-dimensional Langevin equations is used
to study charge fluctuations in fission of highly excited nuclei. Elongation, neck and charge asymmetry
parameters are chosen as relevant collective coordinates. Using as an example 4He +232 Th induced fission
of 236U in a broad range of excitation energies (from 60 to 160 MeV), the isobaric charge variance is
investigated to obtain information on nuclear dissipation. The friction parameter of the charge mode is
calculated under the assumption of both the one-body and two-body mechanisms of nuclear viscosity. The
results obtained for the variances of the charge distribution within the applied approach reveal that the
optimal reproduction of the available data is achieved with the value of the two-body viscosity coefficient
(0.6 ≤ ν0 ≤ 1.8)×10−23MeV s fm−3 that is close to those deduced earlier from the description of the fission
fragment mass-energy distribution. The expression for the friction parameter of the charge mode is derived
within the one-body mechanism of nuclear dissipation. The one-body mechanism of nuclear dissipation
also provides a good reproduction of data on the isobaric charge variance without any adjustable strength
parameter.

PACS. 25.85.-w Fission reactions – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)
– 02.50.Ey Stochastic processes

1 Introduction

In the last decade the fission of highly excited nuclei has
been studied from the viewpoint of dissipative large-scale
collective nuclear motion at a finite temperature. The un-
derstanding of the role of nuclear dissipation for such pro-
cesses as deep-inelastic heavy-ion collisions [1], damping
of giant resonances [2], and induced fission [3] is one of
the most spectacular achievements of contemporary nu-
clear physics. Nevertheless, a common conclusion on the
dissipation strength or the friction coefficient for collec-
tive motion of nuclear matter at a finite temperature is
not reached yet. Presently, there is no unambiguous in-
formation about the deformation and/or the temperature
dependence of nuclear dissipation. Information about the
dissipation strength for collective motion of nuclear matter
at a finite temperature is traditionally deduced from the
analysis of experimental data on multiplicities of prescis-
sion light particles and photons, on fission fragment mass-
energy distributions from excited compound nuclei, and
on the fission probability (cross-sections for evaporation
residue formation). It is symbolic that compilations of
the available estimates for the friction coefficient obtained
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both from more or less a priori theories and from the anal-
ysis of the above-mentioned experimental data are pre-
sented in ref. [4] in logarithmic scale. The elucidation of
the mechanism of nuclear viscosity and the reliable estima-
tion of its value continue being an essentially open ques-
tion. Therefore, it is desirable to extend the number of
observables, whose analysis can provide additional infor-
mation about the dissipation strength of collective motion
of nuclear matter. We deem that charge distributions [5] as
well as angular distributions [6,7] of fragments originating
from the fission of heavy nuclei can be a valuable source of
information about the dynamics of the process. In ref. [6] it
has been shown that distinguishing between presaddle and
saddle-scission prescission neutrons removes a discrepancy
between data for the fission fragment angular anisotropy
and an analysis within the conventional transition state
theory. From the analysis developed in [6] it is possible to
deduce the reduced friction parameter of the main fission
mode (the elongation collective coordinate).

In the present paper to study charge fluctuations the
main attention has been focused on the calculation of the
isobaric charge variance. We have applied the method pro-
posed recently [8] for the description of the fission frag-
ment mass-energy distribution. But the charge asymme-
try collective coordinate has been used instead of the mass
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asymmetry one. The isobaric charge variance of fission
fragments of excited nuclei has been investigated under
the assumption of two viscosity mechanisms: the one-body
and two-body ones. The research has been carried out by
using the three-dimensional Langevin equations for the re-
action 4He + 232Th → 236U in a wide range of excitation
energies of the compound nucleus E∗ = 60–160 MeV. The
calculations reported in this paper are aimed at drawing
a conclusion about the friction with respect to the charge
mode and, in particular, at comparing the predictions of
the model for both viscosity mechanisms.

2 The model

The well-known {c, h, α} parametrization [9] has been
used to describe the shape of the fissioning nucleus. Ac-
tually, we consider the case of symmetric fission, i.e., the
case of α = 0. The model can be easily extended to α �= 0.
However, consideration of the asymmetric nuclear fission
is of minor significance from the viewpoint of the main
purpose of the paper (analysis of charge fluctuations) and
causes appreciable calculation difficulties. Therefore, we
have restricted ourselves to the situation of symmetric fis-
sion.

In the stochastic approach [10] the evolution of collec-
tive coordinates is treated as a motion of Brownian par-
ticles in a “heat bath” constituted by internal degrees of
freedom. The system of coupled Langevin equations for
three collective coordinates has the form

q̇i = µijpj ,

ṗi = −1
2
pjpk

∂µjk

∂qi
− ∂F

∂qi
− γijµjkpk + θijξj , (1)

where i, j, k = 1, 2, 3; q = (c, h, ηZ) are the collective
coordinates; p = (pc, ph, pηZ

) are the conjugate momenta.
The coordinates c and h describe the nuclear shape and
the coordinate ηZ = (ZR −ZL)/(ZR +ZL), where ZR and
ZL are charges of the right and left fragments, determines
the ratio of the numbers of protons in the right and left
fragments. Here and in what follows the subscripts “R”
and “L” refer to the right and left fragments, respectively.
In (1) mij (‖µij‖ = ‖mij‖−1) is the tensor of inertia; γij

is the friction tensor; θijξj is a random force; and ξi is
a random variable satisfying the relations 〈ξi〉 = 0 and
〈ξi(t1)ξj(t2)〉 = 2δijδ(t1 − t2), where the angular brackets
denote averaging over an ensemble.

We have used the free energy F (q) to calculate the
conservative part of the driving force. In the Fermi-gas
model the free-energy functional is defined as

F (q) = V (q) − a(q)T 2, (2)

where V (q) is the potential energy, and the level density
parameter a (q) is determined as follows:

a (q) = αA + βA2/3Bs (q) . (3)

Here A is the mass number of the compound nucleus, Bs

is the dimensionless functional of the surface energy, α =

0.073 MeV−1, and β = 0.095 MeV−1 [11]. The strengths
of the random force θij are evaluated from the equation
θikθkj = Tγij . The “heat bath” temperature is given by
the Fermi-gas model expression T =

√
Eint/a (q), where

Eint is the internal excitation energy. Since the charge
mode is a finite mode, for determination of θηZηZ

one
should use an effective temperature T ∗

Z [12], which takes
into account quantum fluctuations, instead of the “heat-
bath” temperature T :

T ∗
Z =

h̄ωZ

2
coth

(
h̄ωZ

2T

)
, (4)

where ωZ is the frequency with respect to ηZ .
The Langevin trajectories are simulated starting from

the ground state of the compound nucleus. The initial
conditions were chosen by the Neumann method with the
generating function

P (q0,p0, l, t = 0) ∼ exp

(
−V (q0) + 1

2µij(q0)p0
i p

0
j

T

)

× δ(q − q0)F (l) , (5)

where q0 = (c0 = 1, h0 = 0, ηZ0 = 0) are the coordinates
of the ground state. The initial spin distribution function
F (l) was taken from ref. [13]. The initial state is assumed
to be characterized by the thermal-equilibrium momen-
tum distribution in the coordinates (c, h), the initial value
of the momentum p0

ηZ
= 0.

We suppose that if the nuclear shape is so compact
that it does not have a well-defined neck it is meaningless
to speak about charge division between the fragments.
Therefore, evolution of the system with respect to the
charge coordinate starts only after appearance of the neck
in the shape of the fissioning nucleus, and we shall im-
ply (in discussion of calculations of the potential energy,
the transport coefficients of the charge mode, and results
concerning dynamics of charge fluctuations) that the neck
in the nuclear shape already exists. Nevertheless, the co-
ordinates of the ground state of the compound nucleus
were chosen as initial values of the collective coordinates
in order to take into account evaporation of the prescission
neutrons correctly. As shown in ref. [14], an appreciable
part of the prescission neutrons (more than half) is evap-
orated from the nearly spherical compound nucleus at the
early stage of the fission process before the saddle point
is reached. Our dynamical calculations give a linear de-
pendence of the mean prescission neutron multiplicity on
the excitation energy. The multiplicity varies from 1.32
for E∗ = 60 MeV to 5.96 for E∗ = 160 MeV. It is well
known that each evaporated neutron carries away about
8–10 MeV of the total excitation energy. It is obvious that
dynamical calculations, if carried out without evaporation
of the prescission neutrons, lead to a considerable overes-
timation of the nuclear excitation energy on the descent
from the saddle to scission and, hence, to an inadequate
description of fission fragment distributions.

The choice of the initial conditions in the form of
eq. (5) means that we start the Langevin calculations
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from the stage of thermally equilibrated excited nucleus.
The concept of an equilibrated compound nucleus with
fixed excitation energy appears to be a rather unrealis-
tic idealization of the real complicated situation. In any
case the reaction consists of a fast preequilibrium stage
and slower decay of the remaining thermally equilibrated
excited compound nucleus. The equilibration phase can
be described in a proper way in the internuclear cascade
model [15]. When the cascade stage is over, a thermal-
ized residual nucleus is formed. Due to the fluctuations in
the cascade shower, the thermalized residuals have wide
distributions in their overall characteristics: their proton
and neutron numbers, excitation energy, linear and an-
gular momenta. The internuclear cascade model is the
only model which allows to account for these fluctuations
and to determine the whole distribution of the parameters
characterizing the compound nucleus. The consideration
of the preequilibrium stage of the reaction is necessary
for comparison of the calculated results with experimen-
tal data at high excitation energy E∗ > (150–200) MeV.
At lower excitations E∗ < 100 MeV the concept of statis-
tically equilibrated nucleus is a reasonable approximation
of the initial conditions in the modeling of the fission dy-
namics.

Let us introduce the notion of a mean trajectory that
will be frequently used in the paper. The mean trajec-
tory is a trajectory obtained in our dynamical Langevin
calculations by averaging over a trajectory ensemble. In
this case the Langevin equations are reduced to the gen-
eralized Hamilton equations, since the term responsible
for fluctuations (the random force) drops out after aver-
aging (see [23]). The neck radius being equal to 0.3R0,
where R0 is the radius of an initial spherical nucleus [9,8],
was chosen as a scission condition. This condition deter-
mines the scission surface in the space of the collective co-
ordinates. Intersection of stochastic trajectories with the
scission surface forms an ensemble of scission points. Av-
eraging over this ensemble gives the mean scission point.
The mean scission point determines average characteris-
tics of observables (for example, the mean charge or mean
kinetic energy of the fission fragments). Spread of the scis-
sion points relative to the mean scission point determines
variances of the observables (for example, widths of the
charge or kinetic-energy distributions of the fission frag-
ments).

The liquid-drop model (LDM) with the Myers-
Swiatecki coefficients [16] has been used to calculate the
potential energy. The potential energy was obtained as a
sum of the Coulomb energy, the symmetry energy, and the
rotational energy, as usual. In order to calculate the charge
division between the nascent fragments, one has to know
the charge density distribution in the fissioning nucleus.
Ideally this should be determined from the solution of a
variational problem in the framework of a macroscopic
model, either the LDM or the droplet model. Alterna-
tively, a simpler method we have used in this work is to
introduce a new collective coordinate related to the charge
density distribution. Such collective coordinate (ηZ) has
been mentioned above. We have used the simplest as-

sumption about the charge density distribution, namely
the charge density is different in the nascent fragments,
but it is constant inside each of them [17]:

ρp(r) =
{

ρp
R, r ∈ VR ,

ρp
L, r ∈ VL ,

(6)

where VR and VL are the volumes of the fragments. The
total density is assumed to be constant throughout the
volume of the fissioning nucleus:

ρp
R + ρn

R = ρp
L + ρn

L = ρp
0 + ρn

0 = ρ, (7)

where ρp
0 = Z/(4/3πR3

0), ρn
0 = N/(4/3πR3

0), and ρ are the
proton, neutron and total densities for the uniform charge
distribution in the nucleus. The charge densities ρp

R and
ρp
L can be expressed in terms of the parameter ηZ and the

charge density ρp
0 of the original nucleus by

ρp
R = ρp

0

(k + 1)
2k

(1 + ηZ) , ρp
L = ρp

0

(k + 1)
2

(1 − ηZ). (8)

Here k = AR/AL is the mass ratio of the nascent frag-
ments. The expressions for the neutron densities ρn

R and
ρn
L can be obtained from eqs. (7) and (8). It should be

noted that the model proposed in ref. [17] allows to de-
scribe independent division of the mass and charge during
fission not only for the separated fragments but also for all
continuous shapes of the fissioning nucleus directly prior
to scission. Therefore, the model for independent division
of the charge and mass for shapes with a pronounced neck
allows a natural treatment of the formation of the frag-
ment charge distribution in dynamical approaches includ-
ing the stochastic one. Despite its simplicity, the model
was found to work well in the description of the charge
and mass distributions in fission [17,18] and of the prod-
ucts of reactions with heavy ions [19].

The symmetry energy makes the dominant contribu-
tion to the potential energy as a function of the collective
coordinate ηZ . For an arbitrary nuclear shape it can be
calculated under the assumption that this energy is uni-
formly distributed over the whole nucleus and determined
by the integral

Vsym = asym

∫
[ρn(r) − ρp(r)]2

ρ
dV, (9)

where asym = 23.7 MeV is the coefficient of the symme-
try energy. The expressions for the Coulomb and symme-
try energies for the chosen charge density distribution are
given in refs. [17,18,20]. The potential liquid-drop energy
as a function of the parameter ηZ is described by an os-
cillator dependence which is characterized by a stiffness
coefficient with respect to variations of the coordinate ηZ

CηZ
= 2

(
(k + 1)Z

kA

)2

×
(
asymkA+

E0
C

(1−δ)2
[
(1+k)

(
BR

C +kBL
C

)−kBC

])
,

(10)
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where δ = N−Z
A is the neutron excess per nucleon in the

initial nucleus; BC, BR
C , and BL

C are the Coulomb ener-
gies of the whole nucleus and the nascent fragments with
original charge density in units of the Coulomb energy
of the original spherical nucleus E0

C. The stiffness coeffi-
cient CηZ

is not very sensitive to the geometrical config-
uration of the fissioning system at scission. This justifies
the estimates usually made for the stiffness CηZ

[21] for
a simplified scission configuration in the form of spheri-
cal fragments. The values of CηZ

given by (10) are equal
to CηZ

= (7–8) × 103 MeV. The stiffness CηZ
does not

change strongly, and during the descent of the fissioning
system from the saddle point to scission it increases no
more than 20%.

Reliable determination of the transport coefficients en-
tering the Langevin equations (1) remains one of the prin-
cipal unresolved problems of the collective nuclear dynam-
ics (see reviews [1,22] and references therein). In our case
the situation becomes even more complicated since two of
the collective coordinates (c, h) are the shape parameters,
while the third one (ηZ) is related to the charge redistribu-
tion during the fission process and has quite another phys-
ical nature. There are well-developed approaches to the
calculation of the transport coefficients connected with the
shape collective coordinates [23]. On the other hand, there
is no well-elaborated approach to computing the trans-
port coefficients of the charge mode. So the charge mode
transport coefficients (inertia parameter mηZηZ

and fric-
tion parameter γηZηZ

) are often assumed to be coordinate-
independent free variable parameters [18,24], or very sim-
ple hydrodynamical models [21,25] are used to estimate
these transport coefficients of the charge mode. In the
present work the components of the inertia tensor mcc,
mch, and mhh were calculated by means of the Werner-
Wheeler method [23]. A modified one-body mechanism of
nuclear dissipation [1,2,26] with the reduction coefficient
ks = 0.25 [2,8] has been used for the determination of the
friction tensor components γcc, γch, and γhh. Nondiagonal
elements of the inertia tensor mcηZ

and mhηZ
and the re-

spective components of the friction tensor γcηZ
and γhηZ

were supposed to be zero.
The frequently used expression [27] for calculation of

the mass parameter of the charge mode is

mηZηZ
(c, h) =

π

6
r3
0m

ZA2

N

1
rN

. (11)

This expression is not suitable for the problem discussed
by two reasons. First, it is obtained for a flow of an in-
viscid liquid, whereas viscosity plays an essential role in
our model. Second, for deformations close to scission the
nascent fragments are connected by a rather long neck
that is completely ignored in (11) (since the nuclear shape
is approximated by two spheres joined together by a cir-
cular hole of radius rN ). We have used the expression ob-
tained in ref. [21] for a flow of viscous incompressible liq-
uid through a cylindrical neck connecting two spherical
parts for the determination of the inertia parameter of

Fig. 1. The thin curve is the nuclear shape in {c, h, α}
parametrization at the mean scission point; the thick curve
is the approximation of this shape for calculation of the mass
parameter of the charge mode and the friction parameter under
the assumption of the two-body viscosity mechanism.

the charge mode

mηZηZ
(c, h) =

1
3π

mZA2

ρN

l + 2rN

r2
N

, (12)

where l is the neck length. Figure 1 shows the shape of
the nucleus at the mean scission point (thin curve) and the
way it is approximated to be used in eq. (12) (thick curve).
The centers of the spheres coincide with the mass centers
of the fragments. The neck length l is determined from
the condition of the volume conservation of the nucleus.
The nuclear shape is fitted in the same way (see below) to
calculate the friction parameter of the charge mode with
the two-body viscosity mechanism.

As mentioned above, it is a crucial problem how to take
into account the influence of the nuclear deformation on
the friction parameter of the charge mode. In the present
work the coordinate dependence of the parameter γηZηZ

was taken into account in two ways —under the assump-
tion of the one-body and two-body viscosity mechanisms.
The simplest method to evaluate the friction parameter is
to apply the hydrodynamical model. In ref. [21] the dissi-
pation of the isovector vibrations was estimated by means
of a model of steady flow of a viscous incompressible liq-
uid along a cylindrical tube of length l and of radius rN ,
which plays the role of a neck connecting the nascent frag-
ments for the considered model. In this case the field of
velocities obtained from the solution of the Navier-Stokes
equation has the only component along the symmetry axis
of the nucleus z and depends on the cylindrical coordinate
r only [25]:

u(r) = uz(r) =
∆p

4ν0l

(
r2
N − r2

)
, (13)

where ∆p is the pressure difference across the ends of the
tube, ν0 is the coefficient of dynamical viscosity. In the
general case of an incompressible liquid the kinetic energy
of the liquid and the rate of the energy dissipation are
given by

Ekin =
mρ

2

∫
u2dV ,

Ėkin = −ν0

2

∫ (
∂ui

∂xk
− ∂uk

∂xi

)2

dV . (14)
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In (14) the integration over the tube volume is assumed,
and i, k are the Cartesian indices. Thus, for the field of
velocities (13) one has

Ekin =
πmρ (∆p)2 r6

N

96ν2
0 l

,

Ėkin = −π (∆p)2 r4
N

8ν0l
. (15)

Therefore, the reduced friction parameter of the charge
mode is

βηZηZ
=

γηZηZ

mηZηZ

= − Ėkin

2Ekin
=

6ν

r2
N

, (16)

where ν = ν0/ (mρ) is the coefficient of kinematic vis-
cosity. The magnitude ν0 = 1.8 × 10−23 MeV s fm−3 has
been derived in ref. [28] from the experimental data on
the widths of the giant dipole resonances (GDR). We have
used this value of ν0 as a starting value of the two-body
viscosity coefficient in our dynamical Langevin calcula-
tions, because the dipole isovector oscillations along the
symmetry axis of the nucleus are suggested to be the main
cause of the charge redistribution between the nascent
fragments.

A good description of experimental data on the widths
of the GDR has been achieved both with the two-body [29]
and the one-body viscosity mechanisms [30,31]. Moreover,
the one-body viscosity mechanism is more appropriate for
Fermi particle systems than the two-body one. Therefore,
it is also interesting to apply the one-body dissipation
model to calculate the friction parameter of the charge de-
grees of freedom. It is more convenient for our purposes to
write a complete formula expressing the rate of the collec-
tive kinetic-energy dissipation in the one-body dissipation
model [1,26] as follows:

−
(

dEkin

dt

)
= −

(
dEkin

dt

)
wall

−
(

dEkin

dt

)
window

+mv̄
16
9

1
ρ∆σ

Ṅ2
1 . (17)

Here v̄ is the average particle speed; m is the mass of the
particle; ∆σ is the area of the window between two parts
of the system; N1 is the number of particles in one of the
nascent fragments (for example, in the right one). The ex-
plicit expressions for the first two terms in eq. (17) can be
found in refs. [32,8]. The wall formula has been adapted
to study the GDR in ref. [31]. The formula for the friction
parameter of the charge mode in the one-body dissipa-
tion model can be derived in the following way. Equation
(17) should be applied separately to the proton and neu-
tron liquids, and the resulting rate of the energy dissipa-
tion presents a sum of contributions from the proton and
neutron subsystems, i.e., Ėkin = Ėp

kin + Ėn
kin. The condi-

tion of the nucleons number conservation in each fragment
has to be imposed here. Moreover, the shape parameters
must be fixed, because we calculate the rate of the collec-
tive kinetic energy dissipation connected with the charge

Fig. 2. The dependence of the friction parameter of the charge
mode on the elongation parameter c along the mean trajec-
tory. The continuous curve is the calculation with the two-body
viscosity mechanism (ν0 = 1.8 × 10−23 MeV s fm−3) and the
dashed curve is obtained with the one-body viscosity.

transfer through the window but not with the variation of
the nuclear shape. By virtue of these constraints the con-
tribution from the first two terms in (17) vanishes. The
last term in (17) was obtained in refs. [1,26] as an addi-
tional term to the original wall-and-window formula [33].
This term is associated with the resistance of the system
against the change of the mass asymmetry. In the case
of the charge degree of freedom this term describes the
energy dissipation connected with the relative changing
in the number of protons in the fragments without any
changes in nuclear shape. Thus, we have obtained the fol-
lowing expression for the friction parameter of the charge
mode in the one-body dissipation model:

γηZηZ
=

4m

9ρ

AZ

N
[Nv̄p + Zv̄n]

1
∆σ

, (18)

where v̄p and v̄n are the proton and neutron average ve-
locities inside the nucleus, respectively. Figure 2 shows
the dependence of the friction parameter of the charge
mode on the elongation parameter c under the assump-
tion of the two-body (continuous curve) and the one-body
(dashed curve) viscosity mechanisms. It should be noted
that the deformation dependence of γηZηZ

in both viscos-
ity mechanisms is determined by the neck thickness only.
One has γηZηZ

∼ 1/r2
N for the one-body viscosity mech-

anism and γηZηZ
∼ 1/r4

N for the two-body one. It can
be seen from fig. 2 that both viscosities give close values
of the friction parameter in a wide range of nuclear de-
formations. But when the system is approaching scission
the friction parameter γηZηZ

calculated with the two-body
viscosity mechanism increases extremely sharp and at the
mean scission point it exceeds prediction of the one-body
dissipation model more than twice. One more important
distinction between two viscosity mechanisms is the pres-
ence of the adjustable coefficient ν0 in the hydrodynamical
model of two-body viscosity and absence of any variable
coefficients in the one-body dissipation model.

The problem of temperature dependence of the trans-
port coefficients in the Langevin equations (1) (in par-



174 The European Physical Journal A

ticular, of the friction parameters) is still open [34]. Un-
fortunately, quite controversial information is reflected in
literature. The temperature dependence of nuclear dissi-
pation is predicted by different theories to decrease as
1/T 2 [35], to be constant, or to increase with tempera-
ture [36]. Moreover, we suppose that the incorporation of
the temperature-dependent friction parameters does not
alter the main conclusions of the paper. For these reasons
we have not taken into account any temperature depen-
dence of γηZηZ

.

3 Results and discussions

It is well known that the charge distribution has the form
of a curve with one maximum and is usually approximated
in both the experimental and the theoretical studies by a
Gaussian function characterized by the mean value 〈Z〉
and the variance σ2

Z (symmetric fission leads to 〈Z〉 =
Z/2). Earlier the isobaric charge distribution for the fis-
sion of the compound nucleus 236U has been investigated
theoretically on the basis of the multidimensional Fokker-
Planck equation in refs. [18,24] but with the coordinate-
independent friction parameter. Also there are a lot of
experimental data on the variance of the isobaric charge
distributions for the fission of the compound nucleus 236U
at low excitation energies. In particular, it is known [5,
37] that for the thermal-neutron fission of 235U the charge
variance σ2

Z = 0.4 ± 0.05 and does not depend on the ex-
citation energy. Such behavior of the variance indicates
a quantum character of formation of the isobaric charge
distributions at low energies. Also in this energy region
the experimental data on σ2

Z are well described by the ex-
pression of a statistical limit σ2

Z,st = T ∗
Z(〈qsc〉)/CZ(〈qsc〉),

where CZ(〈qsc〉) = 4CηZ
(〈qsc〉)/Z2 and 〈qsc〉 are coor-

dinates of the mean scission point. If T � h̄ωZ/2 than
T ∗

Z 	 h̄ωZ/2 that explains the above-mentioned constancy
of the charge variance for the low-energy fission.

Our dynamical model cannot be applied to the de-
scription of the low-energy fission, because shell effects
and effects of nucleons pairing are not taken into ac-
count in the calculation of the potential energy and trans-
port coefficients. However, we can calculate the magnitude
σ2

Z,st and compare it with the experimental data. For the
thermal-neutron–induced fission of the uranium nucleus
(E∗ = 6.4 MeV) we have obtained σ2

Z,st = 0.35, that is
in accordance with the experimental value of the charge
variance.

3.1 The relaxation times of the charge mode

Let us turn now to the results of the dynamical calcula-
tions. First of all, we shall discuss characteristic times of
the charge mode. For a system with dissipation, it is natu-
ral to use the relaxation time as a characteristic time [38]

τηZ
=




2β̃−1
ηZ

, ωηZ
≥ β̃ηZ

/2

[
β̃ηZ

/2 − (β̃2
ηZ

/4 − ω2
ηZ

)
1/2

]−1

, ωηZ
< β̃ηZ

/2,

(19)

where β̃ηZ
= βηZ

+ṁηZηZ
/mηZηZ

is the generalized damp-
ing coefficient of the charge mode. In (19) the first case
(ωηZ

≥ β̃ηZ
/2) corresponds to the regime of damping oscil-

lations (underdamped motion) and the second case ωηZ
<

β̃ηZ
/2 to the regime of aperiodic damping (overdamped

motion). The calculated results for τηZ
are shown in fig. 3

for both viscosity mechanisms. One can see that the coor-
dinate dependence of the relaxation time is strongly influ-
enced by the two-body viscosity coefficient. In particular,
τηZ

decreases with increasing nuclear deformation when
the charge oscillator is underdamped (figs. 3(a),(b)), and,
on the contrary, τηZ

increases when the charge oscilla-
tor is overdamped (figs. 3(e),(f)). The situations shown
in figs. 3(c),(d) correspond to the regime of damping os-
cillations in the beginning of the evolution of the charge
mode but at c 	 2.1 for ν0 = 1.8 × 10−23 MeV s fm−3

and at c 	 1.75 for ν0 = 5.7 × 10−23 MeV s fm−3 the
system passes into the regime of aperiodic damping (the
kink in the figures). Then we shall add some remarks on
the behaviour of τηZ

in the one-body dissipation model.
Figure 3(c) indicates that under the assumption of the
one-body viscosity mechanism the system is in the regime
of damping oscillations over the entire descent of the nu-
cleus from the saddle point to scission. Besides, the one-
body viscosity mechanism, in contrast to the two-body
one, gives approximately a constant value of the relaxation
time τηZ

	 0.4×10−21 s. It can be easily understood from
eqs. (12), (18), and (19) having taken into consideration
that the neck length does not practically depend on the
nuclear deformation, and the ratio ṁηZηZ

/mηZηZ
is minor

in comparison with βηZ
.

One more important question arisen in connection
with the discussion of the relaxation times of the charge
mode is an applicability of the Langevin equations for
the description of charge fluctuations. We have used the
Langevin equations in the Markovian approximation. It
suggests that relaxation time of intrinsic degrees of free-
dom τint is much smaller in comparison with that of a
considered collective mode. It is shown in ref. [39] that
τint is about 0.2 × 10−21 s. We suppose that the Markov
limit is justified if the relaxation time of the charge de-
gree of freedom is at least about two or three times larger
than τint (i.e. τηZ

> (0.4 − 0.6) × 10−21 s). As mentioned
above τηZ

	 0.4× 10−21 s in the case of the one-body dis-
sipation mechanism that is on the border of applicability
of the Markov limit. In the case of the two-body viscos-
ity mechanism τηZ

increases with increasing the viscosity
coefficient ν0 if charge fluctuations are overdamped and
an increase of ν0 leads to a decrease of τηZ

, if the charge
motion is underdamped. So there is no problem with the
validity of the Markovian approximation for ν0 < 0.57 ×
10−23 MeV s fm−3 and ν0 > 1.8×10−23 MeV s fm−3. The
most problematic case (among all considered) is the case
of fig. 3(c). The minimal value reached by the charge re-
laxation time is about 0.3× 10−21 s and the Markov limit
is not justified there. But in the region determining the
parameters of the charge distribution (near the scission
point) τηZ

= (0.7 − 0.9) × 10−21 s. This is at least three
times larger than τint. Thus, the above-mentioned argu-
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Fig. 3. The relaxation times τηZ of the charge mode as functions of the elongation coordinate c along the mean trajectory.
Continuous curves are obtained with the two-body viscosity mechanism for a number of the viscosity coefficients. Values of the
viscosity coefficient are shown in units (×10−23 MeV s fm−3). The dashed curve is the calculation under the assumption of the
one-body viscosity mechanism.

ments give us a certainty that all the calculated parame-
ters of the charge distribution on the basis of the Langevin
equations in the Markovian approximation are correct.
In our opinion the use of the Langevin equations in the
Markov limit is the first but necessary step in solving the
problem. On the other hand, if the Markovian approxi-
mation is not valid one can use the memory-dependent
Langevin equations with retarded friction [40]. Possible
improvements in this direction could be made in future
studies.

Figure 3(c) shows that the relaxation times τηZ
for

both mechanisms of nuclear viscosity do not exceed
10−21 s that is much less than the characteristic times
of collective modes responsible for the nuclear deforma-
tion [38]. Therefore, it can be expected that not only at
low but also at high excitation energies the charge mode is
equilibrated. In order to verify this statement we have cal-
culated the variance σ2

Z as a function of the mean internal
excitation energy at scission Eint. The dependence of the
charge variance on Eint is shown in fig. 4 in comparison
with the curve of the statistical limit. From the figure it is
seen that the variance of the charge distribution obtained
in our dynamical calculations can be reproduced by the
statistical-limit expression quite well. It is also remark-
able that the curve of the statistical limit passes through
the experimental value of the charge variance at low ener-
gies. These facts confirm the supposition about the charge
mode equilibration at high excitation energies during the

Fig. 4. The variance of the charge distribution σ2
Z as a function

of the mean internal excitation energy at scission. Squares and
triangles are the calculations under the assumption of the two-
body (ν0 = 1.8×10−23 MeV s fm−3) and one-body viscosities,
respectively. The continuous line is the statistical limit at the
mean scission point.

descent of the fissioning nucleus from the saddle to scis-
sion.

The second derivation of σ2
Z,st on the internal en-

ergy calculated at the mean scission point provides ad-
ditional significant information about the mechanism of
formation of the charge distribution. We have come to
the following conclusions from the results of our calcu-
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lations. The energy axis can be divided into two inter-
vals: Eint < 20 MeV and Eint > 20 MeV. In the first
interval

(
∂2σ2

Z,st/∂E2
int

)
> 0, it means that the quan-

tum fluctuations play the dominant role as the mech-
anism of formation of the charge distribution. For the
second interval of the internal excitation energy one has(
∂2σ2

Z,st/∂E2
int

)
< 0, and charge fluctuations in fission

have mainly thermal nature. It is noteworthy that in
ref. [41] the charge distribution was investigated experi-
mentally for helium-ion–induced fission of 232Th for var-
ious excitation energies ranging from 20 to 57 MeV. The
charge distribution was found to be Gaussian and inde-
pendent of the excitation energy (up to 39 MeV). The
values of the charge variance that best fit all energies lie
in the interval 0.45–0.50. Our calculations are in a good
agreement with these results. From fig. 4 it is also clear
that both viscosity mechanisms give almost equal charge
variances within statistical errors emerging due to a finite
number of the Langevin trajectories (in our calculations
about 104 trajectories). It indicates a weak sensitivity of
the width of the isobaric charge distribution to the mag-
nitude of nuclear viscosity.

3.2 The deduced value of the two-body viscosity
coefficient

As shown above, at the present time there is no well-
developed approach to describe the dissipation of dipole
isovector vibrations in fissioning nuclei. The dependence
of the friction parameter of the charge mode on the col-
lective coordinates can be described by simple hydrody-
namical models (see eqs. (12) and (16)) within the two-
body viscosity mechanism. The dissipation strength of the
charge mode characterized by the two-body viscosity co-
efficient ν0 can be deduced from the confrontation of the
data on the charge distribution of fission fragments with
the results calculated for the parameters of this distribu-
tion, particularly its variance. Bearing in mind this ulti-
mate objective of the present work, we have carried out
the calculations of σ2

Z in a wide range of the two-body
viscosity coefficient ν0 = (0.18–57) × 10−23 MeV s fm−3.
The results are shown in fig. 5 in logarithmic scale. It
can be seen from fig. 5 that the interval (0.6 ≤ ν0 ≤
1.8) × 10−23 MeV s fm−3 results in a good agreement of
the calculated variances σ2

Z with the value of the statis-
tical limit and, hence (according to the above-mentioned
conclusion about charge equilibration), with the experi-
mental data on σ2

Z . This interval is our evaluation of the
two-body viscosity coefficient.

Coordinate dependence and magnitudes of the relax-
ation times τηZ

plotted in fig. 3 for all considered vis-
cosity coefficients give us the key to the behavior of the
charge variance σ2

Z . The statistical equilibrium on the
charge mode would be established if the relaxation time
τηZ

had been much less than the time of descent τss

of the fissioning nucleus from the saddle to scission (τss

is about (5–10) × 10−21 s). One can see from fig. 3(b)
that in the most valuable (for the parameters of the
charge distribution) region of nuclear deformations near

Fig. 5. Dependence of the charge variance σ2
Z on the viscosity

coefficient ν0. The solid line corresponds to the statistical limit.
Vertical dashed lines restrict an interval of values of the two-
body viscosity coefficient from refs. [23,29,42,43]. Calculations
have been carried out at the excitation energy E∗ = 60 MeV.

the scission τηZ
	 0.5 × 10−21 s � τss. In the case plot-

ted in fig. 3(c) τηZ
< 10−21 s over the entire descent

from the saddle to scission. A rapid growth of the re-
laxation time of the charge mode on the final stage of
the descent cannot lead to an appreciable deviation of
the dynamically calculated charge variance from the sta-
tistical limit. Therefore, we conclude that in the interval
(0.6 ≤ ν0 ≤ 1.8) × 10−23 MeV s fm−3 the behavior and
values of the relaxation time τηZ

have to result in validity
of the statistical description of the charge variance. On the
other hand, for ν0 < 0.57 × 10−23 MeV s fm−3 (fig. 3(a))
and for ν0 > 1.8 × 10−23 MeV s fm−3 (figs. 3(d)-(f)) val-
ues of the relaxation time τηZ

are comparable with τss

and, hence, the statistical equilibrium at scission is not
established. Indeed, one can see deviation of the calcu-
lated values of σ2

Z from the statistical limit.
The mechanism which determines the growth of

the charge variance in the region ν0 > 1.8 × 10−23

MeV s fm−3 is a “memory effect”. The essence of this
effect can be explained in the following way. Approximate
permanence of the stiffness coefficient CηZ

and increase of
the mass parameter of the charge mode with increasing
deformation leads to the decrease of the effective temper-
ature T ∗

Z . It results in decrease of charge fluctuations and
in narrowing of the equilibrium charge distribution (deter-
mined by the relation T ∗

Z/CZ). On the other hand, rapid
growth of the friction parameter γηZηZ

leads to “freezing
out” of the charge degree of freedom and σ2

Z does not
change its value during the further descent of the sys-
tem up to scission. The “freezing” of the charge mode
takes place at the large values of the viscosity coefficient
ν0 > 1.8 × 10−23 MeV s fm−3 corresponding to the over-
damped motion. Moreover, the larger the coefficient ν0,
the earlier the charge degree of freedom “freezes out” and,
hence, the broader the charge distribution of fission frag-
ments becomes. This mechanism explains qualitatively the
growth of the charge variance with increasing ν0.

Earlier the two-body viscosity was widely used in
studying the fission fragment mass-energy distribution
and certain conclusions about the magnitude of the nu-
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clear viscosity coefficient were made. In refs. [23,42] the
mean kinetic energy of fission fragments was calculated in
a wide range of Z2/A1/3 values. Fitting of the obtained re-
sults to experimental data yielded the following values of
the coefficient: ν0 = (0.9 ± 0.3) × 10−23 MeV s fm−3 [23];
ν0 = (1.9 ± 0.6) × 10−23 MeV s fm−3 [42]. In ref. [43]
the mass-energy distribution of fission fragments was in-
vestigated on the basis of the multidimensional Fokker-
Planck equation. It has been shown there that the results
of the dynamical calculations are in agreement with exper-
imental data when ν0 = (1.5 ± 0.5) × 10−23 MeV s fm−3.
In ref. [29] the various kinds of the collective nuclear
motion have been analyzed (in particular, the separa-
tion of nucleus into fragments and the giant dipole res-
onances). The results of this study have allowed the au-
thors to assert that the nuclear viscosity constant is iden-
tical for all collective degrees of freedom and has the value
ν0 	 10−23 MeV s fm−3. It is easy to see that the results
of our estimations of the viscosity coefficient are in agree-
ment with the previous evaluations of this quantity.

At last, it is useful to note that the dynamical Langevin
calculations performed on the basis of the above model
make it possible to obtain the distribution in deforma-
tions of the fissioning nucleus near the scission region as
well as the distribution of fission events in the internal
excitation energy. Knowledge of these two distributions
of the fissioning nucleus at the instant of scission allows
to calculate the multiplicities of postscission light parti-
cles by using standard statistical code. The details of such
investigations can be found in [44]. The value of the mul-
tiplicities of postscission light particles is needed for com-
parison with fission product data. In fact, in the present
work we study charge fluctuations of the primary fission
fragments (before their de-excitation).

4 Conclusions

The main results of the work can be summarized as fol-
lows.

1. The stochastic approach based on the three-
dimensional Langevin equations allows to describe the
isobaric charge variance for high-energy fission success-
fully. Apparently, the model will give good results at
low excitation energies after the appropriate comple-
tion.

2. In the present work the dynamical calculations of the
charge distribution are carried out under the assump-
tion of the one-body and two-body viscosity mecha-
nisms. The friction parameter of the charge mode has
different coordinate dependences in the two mecha-
nisms of nuclear viscosity but on an absolute value
both viscosity mechanisms give close magnitudes al-
most up to scission. The important difference of the
one-body viscosity mechanism from the two-body one
is the absence of any variable coefficients in the one-
body dissipation model.

3. Despite serious differences between the viscosity mech-
anisms they lead to the practically identical values of

the variance of the charge distributions (within limits
of statistical errors).

4. The calculations of the relaxation times show that
not only at low but also at high excitation energies
the statistical equilibrium with respect to the charge
mode should be established. Such conclusion is con-
firmed with success by our dynamical calculations of
the charge variance as a function of the mean internal
excitation energy at scission.

5. The statistical limit is reached with a good accuracy
both with the one-body viscosity and the two-body
viscosity with the coefficient (0.6 ≤ ν0 ≤ 1.8)×10−23

MeV s fm−3. The value of the two-body viscosity co-
efficient found in the present work from the consider-
ation of the dynamical evolution of the charge mode
agrees with the former evaluations of this coefficient
made for other degrees of freedom of the nucleus [23,
29,42,43].

The authors are grateful to Dr. A. Ya. Rusanov for the enlight-
ening discussions and correspondence.
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